12.4) The Cross Product

1. The Cross Product Definition and Basic Properties:

There are three types of multiplication involving vectors. First, we have scalar multiplication
of a vector, which we learned about in Section 12.2. The remaining two types involve
multiplying one vector by another vector. The first of these is the dot product, which we
learned about in Section 12.3. In this section, we will study the other method for multiplying
a vector by a vector, which is known as the cross product. (At the end of this section, we
will also learn about the box product, which is a combination of the cross product and the
dot product.)

Whereas the dot product of two vectors produces a scalar, the cross product of two vectors
produces a vector. For this reason, the dot product is also known as the scalar product
and the cross product is also known as the vector product.

The cross product is defined only for three-dimensional vectors. In contrast, the dot product
can be performed on either two-dimensional or three-dimensional vectors. Thus, in the
following discussion, all vectors are assumed to be three-dimensional unless otherwise
specified.

Given any two vectors a =< ay,a2,a3 >and b =< by, by, b3 >, the cross product of a and b
is denoted a x b, and is defined by the formula < a,b3 — a3zbz,azb, — a1bs,a1bs — axb, >.

One way to remember the cross product is through the use of determinants...

i j k
Givena =< aj,az,as >and b =< by,by,b3 >, axb =det| a, ar a3
by by b;
By the Cofactor Expansion along the first row, we get
det @ a3 i— det ar j + det a @ k
bz b3 b1 b3 bl b2
Alternative notation:
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axb=|a a a3 | = - Jt
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by by b;

Another way to remember the cross product is through the use of the “Shea Triangle.”
Draw an equilateral triangle. Label the lower left vertex 1, the middle top vertex 2, and the
lower right vertex 3. Start at the top and move full-circle around the triangle in the clockwise



direction. Use each consecutive pair of numbers to fill in the subscripts for a,,b, — a,b,.
This wil give you the first, second, and third components of a x b.

Example One: Ifa=<1,3,4 >andb =<2,7,-5 > thenaxb =
i
1 3 4 |=
2 7 -5
(—15-28)i— (-5 - 8)j + (7— 6)k = —43i + 13j + k = < —43,13,1 >.
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j+ k =

In the above example, note that < —43,13,1 > - < 1,3,4 >= 0 and

< —43,13,1 > - < 2,7,-5 > =0, in other words, a x b is orthogonal to both a and b. Is this a
coincidence? The answer is no, as the following theorem makes clear...

Theorem 1: a x b is orthogonal to both a and b.

We shall prove that a x b is orthogonal to a. (The proof of its orthogonality to b is similar.)
(a X b) e =< azb3 - a3b2,a3b1 —a1b3,a1b2 - a2b1 > e«< aj,az,az > =

(a2b3 —asbz)ay + (a3by — aibz)ay + (a1by — axbr)az =

a1a2b3 - a1b2a3 + b1a2a3 - a1a2b3 + a1b2a3 - b1a2a3 = 0.

Corollary 1 to Theorem 1: a x b is orthogonal to any scalar multiple of a or b.

We shall prove that a x b is orthogonal to ka. (The proof of its orthogonality to kb is similar.)
(axb)-(ka) = k(axb)-a=£k(0)=0.

Example Two: As in Example One,leta=<1,3,4 >andb =<2,7,-5>,so0axb =
< —43,13,1 >. 5a=<5,15,20 >and -3b =< -6,-21,15 >. By Corollary 1 to Theorem 1,
< —43,13,1 > is orthogonal to both < 5,15,20 > and < —-6,-21,15 >.

Corollary 2 to Theorem 1: a x b is orthogonal to any linear combination of a and b.
In other words, if ¢ is a linear combination of a and b, then a x b is orthogonal to c.

This follows from Corollary 1: Lete¢ =pa+gb. (axb)-c =
(axb)«(pa+gb) =(axb):(pa)+(axb):(gb)=0+0=0.

Example Three: As in Example One, leta =< 1,3,4 >andb =< 2,7,-5 > soaxb =
< —43,13,1 >. 7a+2b =< 11,35,18 >. By Corollary 2, < —43,13,1 > is orthogonal to
< 11,35,18 >.

Example Four: Leta=<4,1,3>andb =<3,45> axb=<-7,-11,13 >. Let
c=3a-2b=<6,-5-1> axbisorthogonal to a and b by Theorem 1 and to ¢ by
Corollary 2. As an exercise, you should confirm this by computing the dot product of
<-7,-11,13 >with< 4,1,3 >, < 3,4,5 >, and < 6,-5,—1 >.



Actually, Corollary 1 is a special case of Corollary 2, since any scalar multiple of aor b is a
linear combination of a and b (ka = ka + Ob, and kb = 0Oa + kb). Furthermore, Theorem 1
itself is a special case of both Corollary 1 and Corollary 2, since a = 1a = 1a + Ob and

b =1b = 0a + 1b.

It should come as no surprise that a x b is orthogonal to both a and b, since the cross
product was basically invented for the purpose of finding a vector orthogonal to any given
pair of three-dimensional vectors. In other words, mathematicians started with the goal of
coming up with an operation that would give them this result, and then they figured out a
formula that would accomplish this purpose. It is illuminating to consider the thought
process by which they discovered the formula for the cross product...

Say we have the vectors a =< ay,a3,a3 >and b =< by,b,,b3 >, and we wish to find a vector
c=<cy,c2,c3 >s0thata-c=0andb-c = 0. Obviously, ¢ = 0 would work, but this is
trivial; can we find a nontrivial answer?

a-c=ac;+axy+ascs, andb-c = bici +bica + bzcs, S0 we must find a solution to the
system of linear equations:

1. ajci+axer,+azez =0

2. b1C1+b2C2+b3C3 =0

We multiply equation 1 by 53 and equation 2 by —as3, giving us
1. a1b3c1 + a2b3C2 + a3b3C3 =0

2. —a3b101 - a3b202 - a3b303 =0

Adding these two equations gives us

a1b301 - a3b101 + a2b36‘2 - a3b202 = O, which factors as

(a1b3 - a3b1)01 + (a2b3 - a3b2)C2 = 0, SO

(a2b3 - a3b2)6’2 = —(a1b3 - a3b1)c1, which we may rewrite as
(a2b3 - a3b2)02 = (a3b1 - a1b3)01.

We obtain a solution if we choose ¢; = axb; —asb, and ¢, = asb; — a1 bs.
If we substitute these into our original equation 1, we get:
ai(axbs — azby) + ax(asby —aibs) +ascs = 0

Distributing gives us

a1a2b3 - a1a3b2 + a2a3b1 - a2a1b3 +aszc3; =0

Canceling opposite terms gives us

—a1a3b2 + a2a3b1 +aszc; =0

ascz = a1a3b2 - aza3b1

aszcs = as(a1by — axby)

We obtain a solution if we choose ¢3 = a1b, — azb;.

ThUS, we obtain ¢ =< a2b3 - a3b2,a3b1 - a1b3,a1b2 - a2b1 >,

By the way, the reason the cross product was defined only for three-dimensional vectors is
that in two-dimensional space, it is impossible to find a nonzero vector orthogonal to two
given nonzero vectors (unless the two vectors are parallel). For example, consider
a=<1,1>andb =< 1,-1 > Suppose we could find a nonzero vector ¢ =< ¢;,c, > such
thata.c=0andb-c=0. So:



1. ¢c1+c2 =0

2. c1—-c=0

Adding the two equations gives us 2¢; = 0, so ¢; = 0. This implies ¢, = 0, contradicting our
assumption that ¢ is nonzero.

Theorem 2: Forany vectora,ax0 =0, 0 xa=0, andaxa=0.

The first two equations are true because, in the formula for the cross product, if every term
has a factor of 0, then we get 0 for every term, so we get 0 for every component. For the
third equation, axa=<aas—asaz,aza; —aijasz,aijdax —aza; > =< 0,0,0 >,

Example Five: < 18,-7,29 > x < 18,-7,29 > = 0, by Theorem 2.

Theorem 3: If a and b are nonzero vectors and 6 is the angle between them, then
|]a x b| = absinf.

The proof of this theorem is presented on page 817 of the text. Here is a brief summary:
First we show that |a x b|* = ¢?b? — (a - b)2. We know from the Dot Product Theorem that
a-b = abcosf. Hence, substitution gives us a?h? — a?b? cos?0, or a*b>(1 — cos?0), which
equals a?h?sin’0. Since 0 € [0,x], sinf > 0, so taking square roots gives us

|]a x b| = absinf.

Corollary 1 to Theorem 3: Two nonzero vectors are parallel if and only if their cross
product is 0. (Thus, two nonzero, non-parallel vectors must have a nonzero cross product.)

This follows directly from Theorem 3, since a and b are parallel if and only if sin6 = 0.

Corollary 2 to Theorem 3: Two vectors have a cross product of 0 if and only if one vector
is a scalar multiple of the other.

Corollary 2 is a slight broadening of Corollary 1; we drop the assumption that the vectors
are nonzero, but then we must describe them as having a scalar multiple relationship (we
cannot refer to them as parallel if one might be zero). (Bear in mind that 0 is a scalar
multiple of every vector—it is 0 times the vector.)

Example Six: Leta=<4,-3,-2 >andb =< -12,9,6 >. b=-3a,soaxb =0.

Interestingly, Theorem 2 follows from Corollary 2 to Theorem 3. For any vector a, 0 = 0Oa
and a = la. Thus:

e ax0=ax0a=0
e 0xa=0axa=0
e axa=axla=10



Theorem 4. Let a and b be nonzero, non-parallel vectors. If a x b is orthogonal to ¢, then ¢
is a linear combination of a and b.

Proof:

Leta =< ai,az,a3 >, b=<by,by,b3 >, and ¢ =< cy1,c»,¢c3 >. Assume a and b are nonzero
and non-parallel, and a x b is orthogonal to c.

Since a and b are nonzero and non-parallel, a x b is nonzero. Hence, at least one of its
three components must be nonzero. There are three cases to consider; we will address
only one (the other two are analogous). Say the third component, a5, — a»b;, is nonzero.

We must show that there exist scalars p and ¢ such that ¢ = pa + gb. Thus, p and ¢ must
satisfy the following system of linear equations:

1. ap+ b1q = C]

2. ap+bg=c

3. asp+biqg=cs

We multiply equation 1 by —a, and equation 2 by a;, giving us
1. —aiap—arbiq = —axci

2. aiap+aibag = aic

Adding these two equations gives us

aibrq — axb1q = aic2 — axc1, which factors as

(a1b2 - agbl)q =ajcy —axcy, SO

_ aicx —ascy
q = —————

Returning to our original three equations, we multiply equation 1 by b, and equation 2 by
—b1, giving us

1. a1b2p+b1b2q = b2c1

2. —azblp—blbzq = —b102

Adding these two equations gives us

ai1bop —axb\p = baci — bica, Which factors as

(a1b2 —azbl)p = b2c1 - b102, SO

p:

ayby —azxb

baci —bicy
ayby —azxb

To confirm that we have found a legitimate solution to the system, we must verify that these
values of p and( satisfy equation 3. If we substitute these values into equation 3, we obtain

1 b _b - . . .
the equation a5 ==1—“* M) = ¢3. One of our premises is that a x b is
aiby — axb, arby —arh

orthogonal to ¢, i.e., (axb) - ¢ = 0. It turns out that these two equations are equivalent (you
may work out the details as an exercise).

Hence, we have found scalars p and ¢ such that ¢ = pa + gb, i.e., we have shown that c is a
linear combination of a and b.

QED.



Theorem 4 and Corollary 2 to Theorem 1 can be combined together into one theorem.
However, since Theorem 4 requires a and b to be nonzero and non-parallel, this assumption
must be applied to the combined result...

Theorem 5: Let a and b be nonzero, non-parallel vectors. a x b is orthogonal to ¢
if and only if ¢ is a linear combination of a and b.

2. Geometric Interpretation of the Cross Product:

In x,y,z space, a plane is a set of points satisfying an equation of the form ax + by + ¢z = d,
where a, b, ¢, and d are constants and where a, b, and c are not all zero. (Planes will be
studied in great detail in Section 12.5.)

We say that a representation of a vector lies in a given plane if both the tail and the tip are
in the plane. When this is the case, every point of the representation is in the plane.

We say that a vector belongs to a given plane if the vector has a representation that lies in
the plane. When this is the case, any representation of the vector that intersects the plane
must lie in the plane (if any point of the representation is in the plane, then every point of
the representation is in the plane).

Of course, you should bear in mind that a vector is an equivalence class comprising
infinitely many oriented line segments. If a vector belongs to a plane, it has infinitelty many
representations that lie in the plane, but it also has infinitely many representations that do
not lie in the plane.

To determine whether or not a given vector belongs to a given plane, we choose any point
in the plane to serve as the tail, and then we examine whether the tip is also in the plane.

Example Seven: The vectori =< 1,0,0 > belongs to the plane z = 5, because if its tail is
(3,7,5), then its tip is (4,7,5), and both of these points lie in the plane. On the other hand, i
does not belong to the plane x = 1, because if its tail is (1,6,9), which lies in the plane, then
its tip is (2,6,9), which does not lie in the plane.

If a vector belongs to a given plane, then it also belongs to every plane parallel to that
plane. In Example Seven, for instance, i belongs not only to the plane z = 5, but also to
every horizontal plane. (In particular, note that the standard-position representation of i has
tail (0,0,0) and tip (1,0,0) and lies in the plane z = 0.)

Since 0 =< 0,0,0 > is represented by a single point, rather than by a directed line segment,
0 belongs to every plane. (Every point in every plane is a representation of the zero vector.)

A plane is uniquely determined by two nonzero, non-parallel vectors and a given point. In
other words, given nonzero, non-parallel vectors a and b and a point P, there is a unique



plane to which a and b both belong and which contains P. To visualize this plane, let a and
b both be placed at P. Let 4 be the tip of a and let B be the tip of b (in other words, let PA

represent a and PB represent b). The points 4, B, and P determine a unique plane, which
contains the triangle APAB. We name this plane PAB.

Now let ¢ be any vector. Let ¢ be placed at P, and let C be its tip. C may or may not be in

PAB, so PC may or may not lie in PAB, so ¢ may or may not belong to PAB. If ¢ does
belong to PAB, then c is said to be coplanar with a and b.

More generally, any collection of vectors is said to be coplanar if they all belong to a
common plane, and is said to be non-coplanar if they do not all belong to a common plane
(i.e., if there is no plane to which all the vectors belong). To determine whether or not the
vectors are coplanar, we choose any point in x,y,z space to serve as a common tail for all
the vectors, and then we examine whether that tail and all the tips lie in one plane. (If the
common tail is the origin, then we are examining the standard-position representations of
the vectors.)

Any two vectors are necessarily coplanar, because any three points lie in a common plane.
Likewise, any two vectors and the zero vector are necessarily coplanar. Furthermore, given
three nonzero vectors, if any two of them are parallel, then the three are necessarily
coplanar. In order for the issue to be nontrivial, we must be dealing with at least three
vectors that are nonzero and pairwise non-parallel. In other words, if we have three or more
vectors that are nonzero and pairwise non-parallel, they may be either coplanar or
non-coplanar.

Clarification: When we say that three vectors are pairwise non-parallel, we mean that no
two of them are parallel. If we merely say that three vectors are non-parallel, this means it
is not the case that all three are parallel. Pairwise non-parallel is a much stronger condition!

If we state that three vectors are non-coplanar, this implies they are nonzero and pairwise
non-parallel. (Being nonzero and pairwise non-parallel is a necessary condition, but not a
sufficient condition, for being non-coplanar.)

The following two examples illustrate how three nonzero, pairwise non-parallel vectors may
be either coplanar or non-coplanar. In the first example, they are non-coplanar, but in the
second example, they are coplanar.

Example Eight: The vectorsi =< 1,0,0 >, j =<0,1,0 >, andk =< 0,0,1 > are
non-coplanar. If we examine their standard-position representations, they have tail (0,0,0)
and tips (1,0,0), (0,1,0), and (0,0, 1), and these four points do not lie in one plane. (This
fact should be geometrically obvious, but we can confirm it algebraically: For any plane

ax + by + cz = d, if the four points satisfy the equation, we can infera = b = ¢ = 0, which is a
contradiction.)

Example Nine: The vectorsi =< 1,0,0 >, j =< 0,1,0 >, and < 2,3,0 > are coplanar. If we
examine their standard-position representations, they have tail (0,0,0) and tips (1,0,0),
(0,1,0), and (2,3,0), and these four points lie in one plane, namely, the plane z = 0.



In Example Nine, notice that < 2,3,0 > = 2i + 3j, i.e., < 2,3,0 > is a linear combination of i
and j. In fact, any linear combination of any two vectors is coplanar with those two vectors,
as the following theorem makes clear...

Theorem 6: If ¢ is a linear combination of a and b, then the three vectors are coplanar.

The converse is true provided we assume that a and b are nonzero and non-parallel. This
fact, in conjunction with Theorem 6, gives us an “if and only if” relationship, as the following
theorem makes clear...

Theorem 7: Let a and b be nonzero, non-parallel vectors. ¢ is coplanar with a and b
if and only if ¢ is a linear combination of a and b.

Theorems 5 and 7 can be combined into one theorem...

Theorem 8: Let a and b be nonzero, non-parallel vectors. The following three conditions
are equivalent (i.e., each one implies the other two):

1. axbisorthogonaltoc, i.e., (axb).c=0.
2. cis coplanar with a and b.
3. cis alinear combination of a and b.

Actually, the equivalence of conditions 1 and 2 in the above listing does not depend on
vectors a and b being nonzero and non-parallel. Thus, we can state their equivalence as a
separate theorem...

Theorem 9: A vector is coplanar with a and b if and only if it is orthogonal to a x b.

Proof: (1) If ¢ is non-coplanar with a and b, then a and b are nonzero and non-parallel, so
(by Theorem 8) ¢ is not orthogonal to a x b. (2) Assume c is coplanar withaand b. Ifaorb
is zero, of if a and b are parallel, then a x b is zero, so ¢ is orthogonal to a xb. If aand b are
nonzero and non-parallel, then (by Theorem 8) ¢ is orthogonal to a x b.

Example 10: Let a, b, and ¢ be the vectors defined in Example Four, namely,
a=<413>b=<3,45> andc=<6,-5,-1 > We saw in Example Four that ¢ is a
linear combination of a and b, and is orthogonal to a x b. We can now infer (from either
Theorem 8 or 9) that ¢ is coplanar with a and b. To make this less abstract, let us examine
a specific plane to which a, b, and ¢ all belong. Let us choose P to be the point (5,2,6).
Then 4 = (9,3,9), B = (8,6,11), and C = (11,-3,5). These four points lie in one plane. As
we shall see in Section 12.5, the equation of this plane is 7x + 11y — 13z = —=21. For now,
you may confirm that each of the four points satisfies this equation. Alternatively, if we
place the three vectors in standard position, then we will have P = (0,0,0), 4 = (4,1,3),

B = (3,4,5), and C = (6,-5,-1), and these four points lie in the plane 7x + 11y — 13z = 0.
(Again, the details will be made clear in Section 12.5, but for now, just confirm the four
points satisfy this equation.)



Example 11: Leta=<1,2,0 >andb =<5,4,0> axb =<0,0,-6 >. By Theorem 7 or 8,
these three vectors are non-coplanar because < 0,0,—6 > is not a linear combination of

< 1,2,0 >and < 5,4,0 > (any linear combination of those two vectors would have to have 0
as its third component).

We may generalize from Example 11: If a and b are nonzero and non-parallel, then a x b is
non-coplanar with a and b. On the other hand, if either a or b is zero or the two are parallel,
then a x b is zero and is therefore coplanar with a and b. Thus we have the following
theorem...

Theorem 10: a x b is non-coplanar with a and b if and only if a and b are nonzero and
non-parallel. Equivalently: a x b is coplanar with a and b if and only if one of the vectors is
zero or the two vectors are parallel. (Thus, for nonzero vectors a and b, a x b is coplanar
with a and b if and only if a and b are parallel.)

Proof: By Theorem 9, a x b is coplanar with a and b if and only if a x b is orthogonal to

a x b. The only vector orthogonal to itself is the zero vector. Hence, a x b is coplanar with a
and b if and only if a x b = 0. By Corollary 2 to Theorem 3, the cross product of two vectors
is zero if and only if one vector is a scalar multiple of the other—i.e., one of the vectors is
zero or the two vectors are parallal. Ergo, a x b is coplanar with a and b if and only if one of
the vectors is zero or the two vectors are parallel.

We stated earlier that that two nonzero, non-parallel vectors a and b and a point P

determine a unique plane, which we named PAB (given PA representing a and PB
representing b). a and b belong to PAB, but (by Theorem 10) a x b does not. Let a x b be

placed at P, and let R denote its tip (i.e., let PR represent a x b). Ris notin PAB. Since

a x b is orthogonal to both a and b, PRis perpendicular to both PA and PB. Let C be any
point in PAB distinct from P, and let ¢ be the nonzero vector represented by PC. PCliesin
PAB, so ¢ is coplanar with a and b. Since a x b is orthogonal to ¢ (by Theorem 8 or 9), PRis
perpendicular to PC.

Since a x b is orthogonal to every vector belonging to PAB, we may say it is orthogonal to
the plane itself. In general, a x b is orthogonal to any plane determined by a and b. (Bear
in mind, the point P was chosen arbitrarily. There are infinitely many choices for P, so there
are infinitely many planes determined by a and b, all parallel to each other.)

In the geometrical framework developed above, let ( be the line through P and R, i.e.,
(=PR. (is perpendicular to PAB. Let d be the distance between P and R, i.e.,

d = PR = |ax b|. There are exactly two points on ( whose distance from P is d, one of which
is R. Let R/ be the other point. R and R/ lie on opposite sides of PAB. PR and PRI are
directed line segments with equal length and opposite direction, so they represent opposite

vectors; PR represents a x b, and PRI represents —(a x b). We now have two directed line
segments originating at P, both perpendicular to P4B and both having length d. If we see a
picture of this situation where the tips are unlabeled, how would we know which is which? In

other words, how would we know which directed line segment is ﬁ{), representing a x b, and
which is PR/, representing —(a x b)? What we need is a geometric principle that determines



the direction of a xb. We have such a principle; it is known as the Right-Hand Rule: If
you curl the fingers of your right hand in the direction that a would rotate toward b through
the angle 6 between a and b, then your thumb will point in the direction of a x b.

So far, we have placed a and b both at P, so they are represented by PA and P_B),
respectively. Let us now place a at tail B and b at tail 4. These new representations will
have a common tip, which we name Q. We now have a parallelogram, PAQOB, lying in plane

PAB. Note that a is represented by both PA and B_Q while b is represented by both PB and
AQ.

Let 6 be the angle between a and b, which is <<APB of parallelogram PAQB.

We shall consider side P4 as the base of the parallelogram; its length is a. The length of
side PBis b. Let & be the height of the parallelogram. sinf = %, SO h = bsinf.

For any parallelogram, its area is equal to the length of its base multiplied by its height.
Thus, the area of PAQB is a times bsin0, i.e., absinf. By Theorem 2, this equals |a x b].

Furthermore, the area of APAB is half the area of parallelogram PAQB, or %ab sinf, and
hence equals 1-|a x b|.

We have thus proved the following theorem:

Theorem 11: If a and b are nonzero, non-parallel three-dimensional vectors, then they
determine a parallelogram whose area is |a x b|, and they determine a triangle whose area
is +-[a x b.

Example 12: In x,y,z space, let P = (3,5,2), 4 = (5,6,5), B = (4,8,3), and O = (6,9,6). PA
— — —
and BQ represent the vector a =< 2,1,3 >, while PB and 4Q represent the vector

b=<1,31> axb=<-81,5> whose magnitude is /90 = 3/10. Thus, parallelogram
PAQB has area 3/10 and APAB has area 3 /10.

Note: If a and b are nonzero and non-parallel two-dimensional vectors, and we wish to find
the area of the parallelogram they determine, we could use the formula absin6, which is
equally valid in both two and three dimensions. However, there is a more efficient
approach. Ifa=<aj,a, >and b =< b;,b, >, we can replace a with < a;,a,,0 > and b with
< b1,b,,0 >, and then compute [a x b|. < a1,a2,0 > x < b1,b2,0 >=<0,0,a1b, —asb; >,
whose magnitude is |a;b, — a»b1|. Thus, the area of the parallelogram determined by
<aip,az > and < bl,bz > is |a1b2 - a2b1|.

Example 13: Inthe x,y plane, let P = (1,1), 4 = (3,3), B = (4,7), and Q = (6,9). PA and
BQ represent the vector a = < 2,2 >, while PB and 4Q represent the vectorb =< 3,6 >. We
can find the area of parallelogram PAQOB in either of the two following ways:

10



_ _ _ _ h — _ 18 _ _3
e a=/8=2/2,b=/45 =3J5,anda-b = 18, so cosf A - T

Therefore sinf = 41 — cos’0 = ——, and the area of PAQB is (2\/5)(3\/§)ﬁ = 6.

J10
® |a1by—axb|=|12-6|=6.
Clearly, the second approach is far more efficient!

3. Additional Properties of the Cross Product:

Theorem12: ixj=k, jxk=1i, andkxi=j. (You can use a circle diagram to
remember this.)

The Scalar Multiple Rule: For any scalar ¢, c(axb) = (ca) xb = a x (cb).

If we take ¢ to be —1, and using the fact that —-v = —1v, we get the following result:
—(axb) =—axb =ax-b. Inthis equation, parentheses around —a and —b are implied.

The cross product is not commutative: axb + b x a.

The Reversal Rule: For any vectors aand b, bxa = —(axb). By the same token,
axb =—(bxa). (When a and b are nonzero, if you switch the order of the vectors in the
cross product, you get a vector with the same magnitude as before but in the opposite
direction.)

The cross product is not associative: (axb) xc # ax (bxc).

The Double Cross Product Theorem: a x (bxc¢) = (a-¢c)b—(a-b)ec Note that the result
is a vector.

Convention: In an expression involving the cross product as well as vector addition or
subtraction, the cross product is to be carried out first, unless parentheses are included to
indicate otherwise. (Thus, the relationship between the cross product and vector addition or
subtraction is the same as the relationship between ordinary multiplication and addition or
subtraction.)

Example 14: In the expressions a x b + ¢ or a —b x ¢, the cross product would be carried
out first, but in the expressions a x (b +¢) or (a —b) x ¢, the addition or subtraction would be
carried out first.

The Distributive Property:
ax(b+c)=axb+axc
(a+b)xc=axc+bxc
ax(b—c¢c)=axb-axc

°
°
°
e (a—b)xc=axc—bxec
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In other words, the cross product distributes over vector addition and subtraction. Note that
the result is a vector.

On the basis of the Distributive Property, the cross product of vector binomials can be
distributed out, just like products of ordinary binomials (a process commonly known as
FOIL).

Example 15: (a—b)x(c+d) =axc+axd-bxc—-bxd

Theorem 6 dealt with the expression (a x b) - ¢. This calculation, combining the cross
product with the dot product, is a very important one, as you will see shortly. The following
theorem gives us some options for manipulating the expression...

The Cross Product/Dot Product Theorem:
(axb)ec=(bxc)ra=(cxa)-b=a-(bxc)=b-(cxa)=c-(axb)
Note that the result is a scalar.

4. The Box Product or Triple Scalar Product:

(a xb) - cis called the box product of the vectors a, b, and ¢. Because it produces a
scalar, it is also known as the triple scalar product of a, b, and ¢. This scalar can be
positive or negative or zero.

In arithmetic, when we talk about “the quotient of two numbers,” the order in which we state
the numbers is important. For instance, the quotient of 12 and 3 is 4, whereas the quotient
of 3 and 12 is 0.25. Likewise, the order in which we state the three vectors in a box product
is important. For instance, the box product of a, b, and c is (a x b) - ¢, whereas the box
product of b, a, and c is (b x a) - ¢, which equals the negative of (a x b) - c.

Since the box product of a, b, and ¢ is (a x b) - ¢, the box product is zero if and only if a x b
is orthogonal to ¢. On the basis of this equivalence, several of our earlier theorems can be
reformulated in terms of the box product...

Theorem 13: c is coplanar with a and b if and only if the box product of a, b, and ¢ is zero.
Theorem 13 is a restatement of Theorem 9.

Theorem 14: If ¢ is a linear combination of a and b, then the box product of a, b, and ¢ is
zero and the three vectors are coplanar.

Theorem 14 is a restatement of Corollary 2 to Theorem 1 and Theorem 6.
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Theorem 15: Let a and b be nonzero, non-parallel vectors. The following three conditions
are equivalent (i.e., each one implies the other two):

1. The box product of a, b, and ¢ is zero.
2. cis coplanar with a and b.
3. cis alinear combination of a and b.

Theorem 15 is a restatement of Theorem 8.

On the basis of the above theorems, if any of the three vectors is zero, or if any two of them
are parallel, then the box product is zero. If the three vectors are nonzero and pairwise
non-parallel, the box product may or may not be zero. If the box product is nonzero, then
the three vectors must be nonzero and pairwise non-parallel.

Example 16: Leta=<3,5,-4> b=<-7,-2,6 >, and ¢ =< 6,10,-8 >. Since ¢ = 2a, the
box product of a, b, and ¢ is 0.

Example 17: Leta=<4,1,3>, b =<3,45> andc¢ =< 6,-5,—-1 >. Note that 3a—2b = c.
Since c is a linear combination of a and b, the box product of a, b, and ¢ is 0.

The Cross Product/Dot Product Theorem gives us six equivalent ways of formulating the
box product. However, none of these is an efficient way to compute the box product. The
efficient way of computing the box product is to use the following theorem...

The Box Product Theorem: Leta =< ay,a2,a35 >, b =< b1,by,b3 >, and ¢ =< cy,c2,c3 >.
a, a; ais ay az aj

Then (axb)-c=det| b, b, b3 |, alsodenoted | b, b, b3

c1 Cy» C3 Cl1 C2 C3

Example 18: Leta=<1,2,-1 >, b=<-2,0,3 >, and ¢ =< 0,7,—4 >. The box product of

1 2 -1
a,b,andcis| -2 0 3 |. By the Cofactor Expansion along the third row, we get
0 7 -4
1 -1 1 2 . .
7 5 3 |” 4 5 0 =-73-2)-4(0+4) =-7-16 = -23. (Since the box product is

nonzero, the vectors must be non-coplanar.)

5. Geometric Interpretation of the Box Product:

Theorem 16: If a, b, and ¢ are non-coplanar, then they determine a parallelepiped whose
volume is equal to the absolute value of their box product—i.e., the volume is |(a x b) - ¢|.
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Note: The reason we must take the absolute value is that the box product itself could be a
negative number. We always want volume to be positive, so we must take the absolute
value of the box product ensure we get a positive answer.

In case you are not familiar with it, a parallelepiped is the three-dimensional version of a
parallelogram, just as a rectangular box is the three-dimensional version of a rectangle and
a cube is the three-dimensional version of a square. (A square is a special case of a
rectangle, which is in turn a special case of a parallelogram. Similarly, a cube is a special
case of a rectangular box, which is in turn a special case of a parallelepiped. If a
parallelepiped has adjacent edges that are perpendicular, then it is a rectangular box; if, in
addition, all its edges have equal length, then it is a cube.)

Proof:

Let a, b, and ¢ be non-coplanar vectors. (Hence, they are nonzero and pairwise
non-parallel.) Place all three at a common tail P. Let 4 be the tip of a, let B be the tip of b,

and let C be the tip of ¢, so PA represents a, PB represents b, and PC represents c. P4 and
— —_—
PB determine plane PAB. PC does not lie in PAB (its tail is its only point in PAB).

PA, PB, and PC determine a parallelepiped having adjacent edges are P4, PB, and PC. Let
us name this parallelepiped PABC.

Place a at tail B and b at tail 4. These new representations will have a common tip, which
we name Q. We now have a parallelogram, PAQB, lying in plane PAB. Note that a is

— — . . — —>
represented by both P4 and BQ, while b is represented by both PB and AQ.
Q is one of the eight vertices of PABC, and PAQB is the base of PABC.

By Theorem 11, the area of PAQB is |a x b|.

Let  be the vertical height of PABC (i.e., the height perpendicular to the base). The volume
of any parallelepiped is the product of its vertical height and its base area; thus, the volume
of PABC is hja x b].

(It is possible that ¢ might be orthogonal to PAB, in which case its length, ¢, would be the
vertical height 2. However, this is not generally the case. If it is not, then we would refer to
¢ as the slant height of PABC, which is not what we need for calculating the volume.)

a x b is nonzero. Let u be the unit vector in the direction of ax b, i.e., u = IZ:EI . Like

a x b, u is orthogonal to PAB.

h is the length of the vector projection of ¢ onto u. In other words, % is the absolute value of
the component of ¢ along u, i.e., & = [compyc¢|.
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. . . _ . _axbh . 1 .
Since u is a unit vector, compyec =u ¢ = o] ¢ =] (axb)-c.

So i = |compyc| = 1(a><b)-c|= 1b||(axb)-c|.

[axb| |a x

Thus, the volume of PABC is hja x b| = Iaibl |(a xb) +claxb|=|(axb)-c|

QED.

Example 19: Leta=<1,2,-1 > b=<-2,0,3 >, andc¢ =< 0,7,-4 >. We saw in Example
18 that the box product of a, b, and ¢ is —23. Hence, the volume of the parallelepiped
determined by a, b, and c is 23.
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